

Pyfactor

Welcome to the documentation of Pyfactor - a refactoring tool that visualises
Python source files, modules and importable packages as a graph of dependencies
between Python constructs like variables, functions and classes.

$ pyfactor --help
$ pyfactor script.py
$ pyfactor script.py --skip-external --view

See our PyPI [https://pypi.org/project/pyfactor] page for installation instructions and package information.
If you’ve found a bug or would like to propose a feature,
please submit an issue on GitHub [https://github.com/felix-hilden/pyfactor].

For a glimpse into what is possible, here’s a graph of our parsing module:

[image: pyfactor visualisation]
More examples can be found in our Gallery.

Pyfactor is fundamentally a command line tool.
However, the functionality is also exposed for use in code.
See Reference for CLI help and Guide for configuration tips.

Motivation

Pyfactor exists to make refactoring long scripts easier
and understanding large code bases quicker.
Seeing a graph makes it possible to easily discover structure in the code
that is harder to grasp when simply reading the file,
especially for those that are not intimately familiar with the code.
For example, such a graph could reveal collections of definitions
or connection hubs that could be easily extracted to sub-modules,
or give insight into the code’s complexity.

Still, simply moving definitions around into several files
is not the be-all end-all of refactoring and code style.
It is up to the user to make decisions,
but Pyfactor is here to help!

Release notes

0.4.1 (2021-04-06)

	Fix collapsing waypoints attribute error on graph conversion

0.4.0 (2021-04-06)

	Add multi-file, recursive and importable module analysis (#5 [https://github.com/felix-hilden/pyfactor/issues/5])

	Split CLI file name specification to separate arguments (#5 [https://github.com/felix-hilden/pyfactor/issues/5])

	Add option to specify graph root (#14 [https://github.com/felix-hilden/pyfactor/issues/14])

	Expand assignment parsing (#18 [https://github.com/felix-hilden/pyfactor/issues/18])

	Fix CLI and source gathering logic

0.3.0 (2021-03-05)

	Parse docstrings and provide them as tooltips (#8 [https://github.com/felix-hilden/pyfactor/issues/8])

	Change default render format to SVG (for doc tooltips) (#8 [https://github.com/felix-hilden/pyfactor/issues/8])

	Improve visual representation and legend, analyse waypoints
(#4 [https://github.com/felix-hilden/pyfactor/issues/4], #12 [https://github.com/felix-hilden/pyfactor/issues/12], #13 [https://github.com/felix-hilden/pyfactor/issues/13])

0.2.0 (2021-03-01)

	Add handlers for most Python constructs

	Handle existing constructs more correctly

	Improve visual representation and legend

	Improve command line interface

0.1.0 (2021-01-25)

Initial release with some missing functionality.

Reference

This document contains the command line help and public API of Pyfactor.

Command line interface

Script dependency visualiser.

usage: pyfactor [-h] [--graph [GRAPH]] [--output OUTPUT] [--format FORMAT]
 [--legend [LEGEND]] [--imports IMPORTS] [--skip-external]
 [--exclude EXCLUDE] [--collapse-waypoints]
 [--collapse-exclude COLLAPSE_EXCLUDE] [--root ROOT]
 [--stagger STAGGER] [--no-fanout] [--chain CHAIN]
 [--graph-attr GRAPH_ATTR] [--node-attr NODE_ATTR]
 [--edge-attr EDGE_ATTR] [--engine ENGINE] [--view]
 [--renderer RENDERER] [--formatter FORMATTER] [--version]
 [sources [sources ...]]

Source and output

	sources

	source file names. If sources was disabled by providing no names, –graph is used as direct input for rendering. Disabling two or more of SOURCES, –graph and –output will return with an error code 1.

	--graph, -g

	write or read intermediate graph file. Graph output is disabled by default. If a value is specified, it is used as the file name. If no value is provided, the name is inferred from combining SOURCES. See SOURCES for more information.

Default: “-“

	--output, -o

	render file name. By default the name is inferred from –graph. If the name is a single hyphen, render output is disabled and a graph is written to –graph. See SOURCES for more information. NOTE: –format is appended to the name

	--format, -f

	render file format, appended to all render file names (default: “svg”) NOTE: displaying docstring tooltips is only available in svg and cmap formats

Default: “svg”

	--legend

	render a legend, optionally specify a file name (default: pyfactor-legend)

Parsing options

	--imports, -i

	duplicate or resolve import nodes. Valid values are duplicate, interface and resolve (default: “interface”). Duplicating produces a node for each import in the importing source. Resolving imports links edges directly to the original definitions instead. “interface” leaves import nodes that reference definitions directly below the import in the module hierarchy and resolves others.

Default: “interface”

	--skip-external, -se

	do not visualise imports to external modules

Default: False

	--exclude, -e

	exclude nodes in the source

	--collapse-waypoints, -cw

	remove children of waypoint nodes and mark them as collapsed

Default: False

	--collapse-exclude, -ce

	exclude waypoint nodes from being collapsedwhen –collapse-waypoints is set

	--root, -r

	only show root and its children in the graph NOTE: does not affect graph coloring

Graph appearance

	--stagger

	max Graphviz unflatten stagger

Default: 2

	--no-fanout

	disable Graphviz unflatten fanout

Default: False

	--chain

	max Graphviz unflatten chain

Default: 1

	--graph-attr, -ga

	Graphviz graph attributes as colon-separated name-value pairs (e.g. -ga overlap:false) NOTE: overrided by Pyfactor

	--node-attr, -na

	Graphviz node attributes as colon-separated name-value pairs (e.g. -na style:filled,rounded) NOTE: overrided by Pyfactor

	--edge-attr, -ea

	Graphviz edge attributes as colon-separated name-value pairs (e.g. -ea arrowsize:2) NOTE: overrided by Pyfactor

	--engine

	Graphviz layout engine

Miscellaneous options

	--view

	open result in default application after rendering

Default: False

	--renderer

	Graphviz output renderer

	--formatter

	Graphviz output formatter

	--version, -v

	display version number and exit

Default: False

High-level Python API

	
pyfactor.pyfactor(source_paths=None, graph_path=None, render_path=None, parse_kwargs=None, preprocess_kwargs=None, render_kwargs=None)

	Pyfactor Python endpoint.

See the command line help for more information.

	Parameters

	
	source_paths (Optional[List[str]]) – Python source files

	graph_path (Optional[str]) – graph definition file

	render_path (Optional[str]) – image file

	parse_kwargs (Optional[dict]) – keyword arguments for parse()

	preprocess_kwargs (Optional[dict]) – keyword arguments for preprocess()

	render_kwargs (Optional[dict]) – keyword arguments for render()

	Return type

	None

	
pyfactor.legend(path, preprocess_kwargs, render_kwargs)

	Create and render a legend.

	Parameters

	
	path (str) – legend image file

	preprocess_kwargs (dict) – keyword arguments for preprocess()

	render_kwargs (dict) – keyword arguments for render()

	Return type

	None

Low-level Python API

	
pyfactor.parse(source_paths, graph_path, skip_external=False, imports='interface', exclude=None, root=None, collapse_waypoints=False, collapse_exclude=None, graph_attrs=None, node_attrs=None, edge_attrs=None)

	Parse source and create graph file.

	Parameters

	
	source_paths (List[str]) – paths to Python source files to read

	graph_path (str) – path to graph file to write

	skip_external (bool) – do not visualise imports to external modules (reducing clutter)

	imports (str) – import duplication/resolving mode

	exclude (Optional[List[str]]) – exclude nodes in the graph

	root (Optional[str]) – only show root and its children in the graph

	collapse_waypoints (bool) – collapse waypoint nodes

	collapse_exclude (Optional[List[str]]) – exclude nodes from being collapsed

	graph_attrs (Optional[Dict[str, str]]) – Graphviz graph attributes (overrided by Pyfactor)

	node_attrs (Optional[Dict[str, str]]) – Graphviz node attributes (overrided by Pyfactor)

	edge_attrs (Optional[Dict[str, str]]) – Graphviz edge attributes (overrided by Pyfactor)

	Return type

	None

	
pyfactor.preprocess(source, stagger=None, fanout=False, chain=None)

	Preprocess source for rendering.

	Parameters

	
	source (Source) – Graphviz source to preprocess

	stagger (Optional[int]) – maximum Graphviz unflatten stagger

	fanout (bool) – enable Graphviz unflatten fanout

	chain (Optional[int]) – maximum Graphviz unflatten chain

	Return type

	Source

	
pyfactor.render(source, out_path, format=None, engine=None, renderer=None, formatter=None, view=False)

	Render source with Graphviz.

	Parameters

	
	source (Source) – Graphviz source to render

	out_path (str) – path to visualisation file to write

	format (Optional[str]) – Graphviz render file format

	engine (Optional[str]) – Graphviz layout engine

	renderer (Optional[str]) – Graphviz output renderer

	formatter (Optional[str]) – Graphviz output formatter

	view (bool) – after rendering, display with the default application

	Return type

	None

	
pyfactor.create_legend()

	Create legend source.

	Return type

	Source

Guide

Here are some tips and tricks to using Pyfactor.

Many configuration parameters are dedicated to managing
the amount of information in the graph.
While sometimes having extra information is useful,
particularly with lengthy files, nested modules and many imports
the graph structure can become messy.

Controlling imports

Skipping external imports with --skip-external is likely the first useful
reduction of detail that can greatly simplify the visualisation.
Often tracking imports to external modules is not essential.

With lots of references to only a few import targets,
duplicating imports with --imports duplicate might consolidate imports
before referencing the original sources, which reduces inter-module edges.
Conversely if there are less references per import, resolving the nodes
with --imports resolve can reduce the number of redundant nodes.

Affecting specific nodes

Sometimes very busy nodes can be a distraction to the overall graph.
They can be manually excluded from the visualisation with --exclude.
If instead a part of the graph is particularly interesting,
a node can be set as the graph root with --root.

Gallery

This gallery contains example visualisations
of builtin modules and public libraries.
Note that because the public library examples refer to specific Git commits,
they may be outdated.

Contents

	black

	concurrent

	flake8

	importlib

	json

	pydot

	pyfactor

	pytest

	sphinx-autodoc-typehints

Legend

Legend information is available in the image below (click to enlarge).

[image: legend visualisation]
Nodes represent different types of source objects.
Edges represent dependencies.
The node from which the arrow starts
depends on the node that the arrow head points to.

In addition to type and connectivity information the nodes contain
a line number indicating the location of the definition.
Multiple line numbers are given if the name has multiple definitions.
A single node can also be colored with two colors,
indicating for example a central leaf node.

Nodes are divided into subgraphs separated with bounding rectangles
according to their source module.

Note

Docstrings are provided as tooltips: hover over nodes of the SVG image
to view the tooltip.

Node shapes

	Unknown: node type unknown for some reason

	Multiple: there are multiple definitions with different types for a name

Node colours

	Centrality: the number of connections that a given node has,
deeper red indicates an increased centrality

	Waypoint: a node whose children can only be reached from its parents
via that node

	Collapsed: waypoint with its child nodes collapsed (see CLI options)

	Leaf: has no child nodes

	Root: has no parent nodes

	Isolated: has no dependencies

Edge styles

	Bridge: a dependency that when removed, would break the graph into pieces

	Import: import referencing a node in a different module

black

This example was generated from black source [https://github.com/psf/black/blob/c702588d/src/black/__init__.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: black visualisation]

concurrent

This example was generated from the builtin concurrent module
with pyfactor concurrent --skip-external.
Click the image to enlarge.

[image: concurrent visualisation]

flake8

This example was generated from flake8 source [https://github.com/PyCQA/flake8/blob/e0116d8e/src/flake8/style_guide.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: flake8 visualisation]

importlib

This example was generated from the builtin importlib module
with pyfactor importlib --skip-external.
Click the image to enlarge.

[image: importlib visualisation]

json

This example was generated from the builtin json module
with pyfactor json --skip-external.
Click the image to enlarge.

[image: json visualisation]

pydot

This example was generated from pydot source [https://github.com/pydot/pydot/blob/5c9b2ce7/pydot.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: pydot visualisation]

pyfactor

This example was generated from pyfactor source [https://github.com/felix-hilden/pyfactor/blob/522f3ee5/pyfactor/_parse.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: pyfactor visualisation]

pytest

This example was generated from pytest source [https://github.com/pytest-dev/pytest/blob/0061ec55/src/_pytest/python.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: pytest visualisation]

sphinx-autodoc-typehints

This example was generated from sphinx-autodoc-typehints source [https://github.com/agronholm/sphinx-autodoc-typehints/blob/49face65/sphinx_autodoc_typehints.py]
with pyfactor source.py --skip-external.
Click the image to enlarge.

[image: sphinx-autodoc-typehints visualisation]

Index

 C
 | L
 | P
 | R

C

 	
 	create_legend() (in module pyfactor)

L

 	
 	legend() (in module pyfactor)

P

 	
 	parse() (in module pyfactor)

 	
 	preprocess() (in module pyfactor)

 	pyfactor() (in module pyfactor)

R

 	
 	render() (in module pyfactor)

Pyfactor

Oops! The page you are looking for was not found.
Maybe you’ll find what you’re looking for by searching the documentation
or returning to the home page [https://pyfactor.rtfd.org].

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Pyfactor

_static/plus.png

